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Technical Overview
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Technical Overview

• The main effort will be the design and creation of novel devices
which address the needs of a laser-based beamsteering transmitter
for Gb/s communication.

• The approach uses a wavelength tunable DFB and a highly dispersive optical
element for beam steering

• Candidate dispersive elements to be developed include the photonic crystal
superprism.
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Organization
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Model for Two-Dimensional Propagation in a
One-Dimensional Lattice
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The spatial dependence of the electric 
field is given by
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n labels unit cell

x

z

1 2 1 12 2

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED



A = eik1za cos k2zb( )+ i
2

k2z
k1z

+ k1z
k2z

 

 
 

 

 
 sin k2zb( )

  

 
 

  

 
 

D = e−ik1za cos k2zb( )−
i
2

k2z
k1z

+
k1z
k2z

 

 
 

 

 
 sin k2zb( )

  

 
 

  

 
 

kBloch =
1
Λ

cos−1 A + D
2

  
  

  
  

The field is a Bloch wave, so the field in one unit cell is simply related to the field 
in the next unit cell.
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Solving the eigenvalue relation gives the dispersion relation
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One-Dimensional Grating and Dispersion Relation
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At a fixed angle, as the incident wavelength
changes, the transmitted beam direction changes
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kincident

Steering Estimate

Angle of grating ~ 40

For ∆λ = 15 nm
∆Θ(output) = 14

R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” 
J. Mod. Opt., 34, (1987)

P. St. J. Russell, “Optics of Floquet-Bloch Waves in Dielectric Gratings,”
Appl. Phys. B., 39 (1986)

Early work on beamsteering in 1D
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2D steering with 1D grating

Θ

For a layered structure, the dispersion surface is 
rotationally symmetric about the axis
of periodicity
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guiding 
region

Guiding in the Vertical Direction

Only the regions outside the substrate dispersion circle will not 
couple radiation into the substrate

leaky
region
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Waveguide Epitaxy

The AlO layer isolates the waveguide from the high-index substrate
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constant frequency
contours

Photonic Crystalline Optics

!!
"!
v g = ∇ "!

k ω(k)

Dispersive propagation allows separation and 
manipulation of many wavelengths independently.

TE Bands for 2D Hexagonal Lattice
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H. Kosaka, et al., “Superprism phenomena in photonic crystals,” Phys Rev B., 58 (1998)
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Advantages of Two-Dimensional Structures

• Highly dispersive region no longer appears only at the zone boundary

• There are more Bragg planes which means more flexibility in the shape 
of the dispersion surface
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Producing a Low-Insertion Loss Device is an Important Goal

FDTD calculation showing reflection at the Bragg condition

uniform
dielectric

1D DBR

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED



Efficient coupling into the modulator is important

We will investigate means of reducing the insertion 
loss into the dispersive optical element.

• AR coatings

• adiabatic lattice changes

point source in 
free space

dielectric with adiabatic
lattice change
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Photonic Crystal Fabrication

• Defined by e-beam lithography

• Pattern transfer by ion beam mill,
reactive ion etch, and electron cyclotron
resonance etch
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1D and 2D PBG Micrographs
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GaAs PBG Cross-Sections
after ECR etch
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Numerical Tools

• Finite-difference time-domain

TE Bands for 2D Hexagonal Lattice

N
or

m
al

iz
ed

 F
re

qu
en

cy

Γ ΓJX

Bandstructure and dispersion
relations

Two and three-dimensional fields calculations
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Near-Term Goals

• Design, fabricate, and characterize one-dimensional gratings

• Design, fabricate, and characterize two-dimensional gratings

• Model insertion loss, and evaluate candidate solutions
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